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ABSTRACT
Ionizing-radiation-resistant bacteria (IRRB) are important
in biotechnology. The use of these bacteria for the treatment
of radioactive wastes is determined by their surprising ca-
pacity of adaptation to radionuclides and a variety of toxic
molecules. In silico methods are unavailable for the pur-
pose of phenotypic prediction and genotype-phenotype rela-
tionship discovery. We analyze basal DNA repair proteins
of most known proteomes sequences of IRRB and ionizing-
radiation-sensitive bacteria (IRSB) in order to learn a clas-
sifier that correctly predicts unseen bacteria. In this work,
we formulate the problem of predicting IRRB as a multiple-
instance learning (MIL) problem and we propose a novel ap-
proach for predicting IRRB. We use a local alignment tech-
nique to measure the similarity between protein sequences
to predict ionizing-radiation-resistant bacteria. The first
results are satisfactory and provide a MIL-based predic-
tion system that predicts whether a bacterium belongs to
IRRB or to IRSB. The proposed system is available online
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1. INTRODUCTION
Nuclear waste contains a variety of toxic and radioactive

substances. The bioremediation of these wastes with perti-
nent bacteria and low cost is a challenging problem [13, 16].
The use of ionizing-radiation-resistant bacteria (IRRB) for
the treatment of these radioactive wastes is determined by
their surprising capacity of adaptation to radionuclides and
to a variety of toxic molecules. To date, genomic databases
indicate the presence of thousands of genome projects. How-
ever, only a few computational works are available for the
purpose of phenotypic prediction discovery that rapidly de-
termines useful genomes for the bioremediation of radioac-
tive wastes [16, 17].

A main idea in this context is that resistance to ioniz-
ing radiation and tolerance of desiccation are two complex
phenotypes, and suggest that protection and repair mech-
anisms are complementary in IRRB. In addition, it seems
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that the shared ability of IRRB to survive the damaging
effects of ionizing radiation and desiccation is the result of
basal DNA repair pathways and that basal DNA repair pro-
teins in IRRB, unlike many of their orthologs in ionizing-
radiation-sensitive bacteria (IRSB), present a strong ability
to effectively repairs damage incurred to DNA.

In this work, we study the basal DNA repair protein of
IRRB and IRSB to solve the problem of phenotypic predic-
tion in IRRB. Thus, we consider that each studied bacterium
is represented by a set of DNA repair proteins. Due to this
fact, we formalize the problem of phenotypic prediction in
IRRB as a multiple instance learning problem (MIL). In a
MIL setting, the training data is available only as set of bags
of instances with labels for the bags. In our context, bac-
teria represent bags and repair proteins of each bacterium
represent instances.

Many multiple instance learning algorithms have been de-
veloped to solve several problems such as predicting types
of Protein-Protein Interactions (PPI) [19] and drug activ-
ity prediction [5], mainly including Diverse Density [9],
Citation-kNN and Bayesian-kNN [18]. Diverse Density
(DD) was proposed in [9] as a general framework for solving
multi-instance learning problems. The main idea of DD ap-
proach is to find a concept point in the feature space that
are close to at least one instance from every positive bag and
meanwhile far away from instances in negative bags. The op-
timal concept point is defined as the one with the maximum
diversity density, which is a measure of how many different
positive bags have instances near the point, and how far the
negative instances are away from that point. In [18], the
minimum Hausdorff distance was used as the bag-level dis-
tance metric, defined as the shortest distance between any
two instances from each bag. Using this bag-level distance,
we can predict the label of an unseen bag using the k-NN
algorithm.

The above cited algorithms use an attribute-value format
to represent their data. A most used approach to represent
protein sequences in an attribute-value format is to extract
motifs that can serve as attributes. Appropriately chosen
sequence motifs may reduce noise in the data and indicate
active regions of the protein. A protein can be represented as
a set of motifs [2, 14] or as a vector in a vector space spanned
by these motifs [15]. However, the use of this technique is
not suitable in the context of phenotypic prediction of IRRB.
This is due to the fact that the set of proteins of each bag
must be represented (in the attribute-value format) with the
same set of attributes which is possible only if all extracted
motifs from the different bag of proteins are putting together
as a unique set of motifs. As the different bags of proteins
are processed disjointly, it is necessary to design a novel
approach for such case.

In this paper, we propose a MIL approach for predict-
ing IRRB using proteins implicated in basal DNA repair in
IRRB. We used a local alignment technique to measure the
similarity between protein sequences of the studied bacteria
to predict ionizing-radiation-resistant bacteria. To the best
of our knowledge, this is the first work which proposes an in
silico approach for phenotypic prediction in IRRB.

The remainder of this paper is organized as follows.
Section 2 presents the materials and methods used in
our study. In Section 3, we describe our experimental
techniques and we discuss the obtained results. Concluding
points and possible future directions make the body of
Section 4.

2. MATERIALS AND METHODS

2.1 Terminology and problem formulation
The task of multiple instance learning (MIL) was coined

by Dietterich et al. [4] when they were investigating the
problem of drug activity prediction. In multiple-instance
learning, the training set is composed of n labeled bags.
Each bag in the training set contains k instances and have
a bag label yi ∈ {−1,+1}. We notice that instances of each
bag have labels yij ∈ {−1,+1}, but these values are not
known during training. The most common assumption in
this field is that a bag is labeled positive if at least one of
its instances is positive, which can be expressed as follows:

yi = max
j

(yij). (1)

The task of MIL is to learn a classifier from the train-
ing set that correctly predicts unseen bags. Although MIL
is quite similar to traditional supervised learning, the main
difference between the two approaches can be found in the
class labels provided by the data. According to the specifi-
cation given by Dietterich et al. [4], in a traditional setting
of machine learning, an object m is represented by a feature
vector (an instance) which is associated to a label. How-
ever, in a multiple instance setting, each object m may have
k various instances denoted m1,m2, · · · ,mk. The difference
between the traditional setting of machine learning and the
multiple instance learning setting can be represented clearly
in Figure 1 where the difference between the input objects
is shown.

Figure 1: Differences between traditional supervised
learning and multiple instance learning.

In our work, we are interested to a specific bacteria family
with high radioresistance to ionizing radiation and tolerance
of desiccation. This family contains a set of bacteria. Let
DB = {X1, . . . , Xn} be a bacteria database. Each bac-
terium in the database is represented by a set of proteins
Xi = {pi1, · · · , pik} and belongs to a class label yi with
yi = {IRRB, IRSB}. The problem of phenotypic predic-
tion of IRRB can be seen as a MIL problem in which bac-
teria represent bags, and basal DNA repair proteins of each
bacterium represent instances.

The problem investigated in this work is to learn a
multiple-instance classifier in this setting. Given a query
bacterium Q = {p1, · · · , pk}, the classifier must use primary
structures of basal DNA repair proteins in Q and in each
bag of DB to predict the label of Q.



2.2 MIL-ALIGN algorithm
Based on the formalization, we propose the MIL-ALIGN

algorithm allowing to predict ionizing-radiation-resistant
bacteria. The proposed algorithm focuses on discriminating
bags by the use of local alignment technique to measure the
similarity between each protein sequence in the query bag
and corresponding protein sequence in the different bags of
the learning database.

In MIL-ALIGN algorithm we use the following variables
for input data and for accumulating data during the execu-
tion of the algorithm:

• the variable Q: corresponds to the query bag (the
query bacterium) which is a vector of protein se-
quences.

• the variableDB: corresponds to the bacteria database.

• the variable M : corresponds to a matrix used to store
alignment score vectors.

Algorithm 1 MIL-ALIGN

Require: Learning database DB = {(X1, y1), · · · , (Xn, yn)},
Query Q = {pq1, · · · , pqk}

Ensure: Class R = IRRB or IRSB
1: for all pqi ∈ Q do
2: for all Xj do
3: Mij ← LocalAlignment(pqi, pXji) //Xj =

{pj1, · · · , pjk} and pXji is the protein number i of bac-

terium Xj

4: end for
5: end for
6: R← Aggregate(M)
7: return R

Informally, the algorithm works as follows (see Algorithm
1):

1. For each protein sequence pqi in the query bag Q, MIL-
ALIGN computes the corresponding alignment scores
with each protein of bacteria in the database (line 1 to
5).

2. Store alignment scores of all protein sequences of query
bacterium into a matrix M (line 3). Line i of M cor-
responds to a score vector of protein pqi against all
proteins pXji of Xj with 1 ≤ j ≤ n. Element Mij

corresponds to the alignment score of protein pqi of Q
with protein pXji of bacterium Xj .

3. Apply an aggregation method to S in order to compute
the final prediction result R (line 7). A query bac-
terium is predicted as IRRB (respectively IRSB) if the
aggregation result of similarity scores of its proteins
against associated proteins in the learning database is
IRRB (respectively IRSB).

2.3 Experimental environment
Information on complete and ongoing IRRB genome se-

quencing projects was obtained from the GOLD database
[8]. We initiated our analyses by retrieving orthologous pro-
teins implicated in basal DNA repair in IRRB with fully
sequenced genomes.

Table 1 presents the used IRRB and IRSB.

Table 1: Experimental set of Bacteria
ID Bacterium Phenotype
B1 Acinetobacter radioresistens SH164

IRRB

B2 Kineococcus radiotolerans SRS30216
B3 Methylobacterium radiotolerans JCM 2831
B4 Deinococcus maricopensis DSM 21211
B5 Gemmata obscuriglobus UQM 2246
B6 Deinococcus proteolyticus MRP
B7 Truepera radiovictrix DSM 17093
B8 Acinetobacter radioresistens SK82
B9 Escherichia coli OP50

IRSB

B10 Neisseria gonorrhoeae MS11
B11 Neisseria gonorrhoeae PID1
B12 Neisseria gonorrhoeae DGI18
B13 Pseudomonas putida S16
B14 Thermus thermophilus SG0.5JP17-16

For our experiments, we constructed a training set con-
taining 14 bags (8 IRRB and 6 IRSB). Each bag contains
at most 30 instances which correspond to proteins impli-
cated in basal DNA repair in IRRB (see Table 2). Protein
sequences were downloaded from the FTP website of the
curated database SwissProt 1.

3. RESULTS AND DISCUSSION

3.1 Experimental techniques
The computations were carried out on a duo CPU 2.86

GHz PC with 2 GB memory, operating on Ubuntu Linux.
In the classification process, we used the Leave-One-Out
(LOO) technique [7] also known as jack-knife test. For each
dataset (comprising n bags), only one bag is kept for the
test and the remaining part is used for the training. This
action is repeated n times. In our context, the leave-one-out
is considered to be the most objective test technique com-
pared to the other ones (i.e., hold-out, n-cross-validation) as
our training set contains a small number of bacteria.

For our tests, we used the BLAST tool [1] for computing
local pairwise alignments. We implemented and tested two
aggregation methods with MIL-ALIGN: the Sum of Maxi-
mum Scores method and the Weighted Average of Maximum
Scores method.

Sum of Maximum Scores (SMS). For each protein in
the query bacterium, we traverse the corresponding line of
M which contains the obtained scores against all other bac-
teria of the training database. The SMS method selects the
maximum score among the alignments scores against IRRB
(which we call maxR) and the maximum score among the
scores of alignments against IRSB (which we call maxS). It
then compares these scores. If maxR is greater than maxS ,
it adds maxR to the total score of IRRB (which we call
totalR(M)). Otherwise, it adds maxS to the total score
of IRSB (which we call totalS(M)). When all the selected
proteins were traversed, the SMS method compares the to-
tal scores of IRRB and IRSB. If totalR(M) is greater than
totalS(M), classification refers IRRB. Otherwise, classifica-
tion refers IRSB.

Below, we formally define the SMS method:

SMS(M) =

{
IRRB, if totalR(M) ≥ totalS(M),

IRSB, otherwise,

where

1http://www.uniprot.org/downloads



Table 2: Replication, repair, and recombination proteins related to ionizing-radiation-resistant bacteria
ID Protein Function
P1 DNA polymerase III, α subunit

DNA polymerase
P2 DNA polymerase III, ε subunit
P3 Putative DNA polymerase III, δ subunit
P4 DNA-directed DNA polymerase
P5 DNA polymerase III, τ/γ subunit
P6 Single-stranded DNA-binding protein

Replication complex

P7 Replicative DNA helicase
P8 DNA primase
P9 DNA gyrase, subunit B
P10 DNA topoisomerase I
P11 DNA gyrase, subunit A
P12 Smf proteins

Other DNA-associated proteins

P13 Endonuclease III
P14 Holliday junction resolvase
P15 Formamidopyrimidine-DNA glycosylase
P16 Holliday junction DNA helicase
P17 RecF protein
P18 DNA repair protein
P19 Holliday junction binding protein
P20 Excinuclease ABC, subunit C
P21 Transcription-repair coupling factor
P22 Excinuclease ABC, subunit A
P23 DNA helicase II
P24 DNA helicase RecG
P25 Exonuclease SbcC
P26 Ribonuclease HII
P27 Excinuclease ABC, subunit B
P28 A/G-specific adenine glycosylase
P29 RecA protein
P30 DNA-3-methyladenine glycosidase II, putative

• totalR(M) =
∑n

i=1 max1≤j≤k Mij such that yj =
IRRB, and

• totalS(M) =
∑n

i=1 max1≤j≤k Mij such that yj =
IRSB.

Weighted Average of Maximum Scores (WAMS).
With the WAMS method, each protein pi has a given weight
wi. For each protein in the query bacterium, we traverse the
corresponding line of M which contains the obtained scores
against all other bacteria of the training database. The
WAMS method selects the maximum score among the scores
of alignments against IRRB (which we call maxR(M)) and
the maximum score among the scores of alignments against
IRSB (which we call maxS(M)). It then compares these
scores. If the maxR(M) is greater than maxS(M), it adds
maxR(M) multiplied by the weight of the protein to the
total score of IRRB and it increments the number of IRRB
having a max score. Otherwise, it adds maxS(M) multiplied
by the weight of the protein to the total score of IRSB and it
increments the number of IRSB having a max score. When
all the selected proteins were traversed, we compare the av-
erage of total scores of IRRB (which we called avgR(M))
and the average of total scores of IRSB (which we called
avgS(M)). If avgR(M) is greater than avgS(M), prediction
refers IRRB. Otherwise, classification refers IRSB.

Below, we formally define the WAMS method:

WAMS(M) =

{
IRRB, if avgR(M) ≥ avgS(M),

IRSB, otherwise,

where

• avgR(M) = totalR(M)/numM , and

• avgS(M) = totalS(M)/numM ,

and

• totalR(M) =
∑n

i=1 max1≤j≤k Mij · wi such that yj =
IRRB, and

• totalS(M) =
∑n

i=1 max1≤j≤k Mij · wi such that yj =
IRSB,

where wi is the weight of the protein pi.

3.2 Results
In order to simulate traditional setting of machine learn-

ing in the context of predicting IRRB, we conducted a set
of experiments with MIL-ALIGN by selecting just one pro-
tein for each bacterium in the training set. Each experiment
consists of aggregating alignment scores between a protein
sequence of a query bacterium and the corresponding pro-
tein sequences of each bacterium in the learning database.
We present in Table 3 classification results with the tradi-
tional setting of machine learning. The LOO-based evalua-
tion technique was used to generate the presented results.

As shown in Table 3, we conducted only 22 experiments
(with only 22 proteins). This is due to the fact that ex-
periments on proteins which are not expressed at least for



Table 3: Classification results with the traditional setting of machine learning

Protein
Dataset

Accuracy (%) Sensitivity (%) Specificity (%)
IRRB IRSB

DNA primase 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 85.7 87.5 83.3
Replicative DNA helicase 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 78.5 85.7 71.4
DNA topoisomerase I 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 78.5 85.7 71.4
DNA gyrase, subunit A 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 71.4 75 66.6
Endonuclease III 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 71.4 70 75
Formamidopyrimidine-DNA glycosylase 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 71.4 75 66.6
RecA Protein 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 64.2 66.6 60
DNA polymerase III, α subunit 8 (B1 B2 B3 B4 B5 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 57 66.6 55.5
Excinuclease ABC, subunit A 8 (B1 B2 B3 B4 B5 B6 B7 B8) 4 (B9 B10 B11 B12 B13 B14) 75 87.5 60
DNA helicase RecG 5 (B1 B4 B6 B7 B8) 6 (B9 B10 B11 B12 B13 B14) 90.9 83.3 100
Excinuclease ABC, subunit C 6 (B1 B2 B3 B5 B7 B8) 5 (B9 B10 B11 B12 B13) 81.8 100 71.4
Transcription-repair coupling factor 6 (B1 B2 B3 B5 B7 B8) 5 (B9 B10 B11 B12 B14) 72.7 71.4 75
DNA polymerase III, τ/γ subunit 6 (B2 B3 B4 B5 B6 B7) 5 (B9 B10 B11 B13 B14) 72.7 80 66.6
DNA gyrase, subunit B 5 (B1 B2 B3 B5 B8) 6 (B9 B10 B11 B12 B13 B14) 63.6 60 66.6
Holliday junction resolvase 4 (B1 B2 B3 B4 B6) 6 (B9 B10 B11 B12 B13 B14) 70 66.6 71.4
DNA polymerase III, ε subunit 6 (B1 B2 B3 B4 B6 B8) 3 (B9 B13 B14) 77.7 83.3 66.6
Excinuclease ABC, subunit B 6 (B1 B2 B3 B5 B7 B8) 3 (B9 B12 B13) 44.4 66.6 33.3
RecF protein 5 (B1 B2 B4 B6 B7) 3 (B9 B13 B14) 75 80 66.6
A/G-specific adenine glycosylase 7 (B1 B3 B4 B5 B6 B8) 1 (B13) 75 85.7 0
Single-stranded DNA-binding protein 6 (B1 B4 B5 B6 B7 B8) 2 (B9 B13) 50 66.6 0
Ribonuclease HII 2 (B1 B8) 5 (B9 B10 B11 B12 B13) 85.7 66.6 100
DNA-directed DNA polymerase 4 (B2 B3 B5 B6) 1 (B13) 60 75 0

one IRRB bacterium and for one IRSB bacterium were not
conducted. Results in Table 3 show that the use of our al-
gorithm with just one instance for each bag in the learning
database allow good accuracy values especially with some
specific proteins. However, almost all results were generated
without the whole set of bacteria. In fact, when a protein
is not expressed in a specific bacterium, we do not use the
bacterium in the learning database. For example, the pro-
tein DNA helicase RecG is expressed for only 11 bacteria (5
IRRB and 6 IRSB) from the set of 14 bacteria of the training
set (see Table 1).

In order to study the incorrectly classified bacteria with
the traditional setting of machine learning, we computed for
each bacterium in the learning database, the percentage of
experiments that fail to correctly classify the bacterium (see
Table 4).

As shown in Table 4, some bacteria present high rates of
failed predictions. This means that we fail to correctly pre-
dict the phenotype of those bacteria with most proteins. On
the other hand, the results illustrated in Table 4 may help
to understand some characteristics of the studied bacteria.
For example, the Thermus thermophilus SG0.5JP17-16 bac-
terium presents a high rate of failed predictions (83.33 %). It
mean that in most cases, Thermus thermophilus SG0.5JP17-
16 is predicted as IRRB. This result shows that Thermus
thermophilus SG0.5JP17-16 might allow a strong ability for
DNA protection and repair mechanisms and confirm the in
vitro results presented in [10], [12] and [11].

In order to study the importance of considering the prob-
lem of classifying ionizing-radiation-resistant bacteria as a
multiple instance learning problem, we present in Table 5 the
experimental results of MIL-ALIGN using a set of proteins
to represent the studied bacteria. For each set of proteins
and for each aggregation method, we present the accuracy,
the sensitivity and the specificity of MIL-ALIGN. We notice
that the WAMS aggregation method was used with equally
weighted proteins. We used the LOO-based evaluation tech-
nique to generate the presented results.

We notice that the use of the whole set of proteins to rep-
resent the studied bacteria allows good accuracy accompa-
nied by a high values of sensitivity and specificity especially
with the WAMS aggregation method. This can be explained

by a good choice of proteins to represents the studied bac-
teria. For example, with the combination of DNA primase
(P8), DNA helicase RecG (P24) and A/G-specific adenine
glycosylase (P28) and with the WAMS aggregation method,
we have 92.8 % of accuracy, 88.8 % of sensitivity and 100
% of specificity. We do not exceed these values in all the
cases presented in Table 3. This result can be explained
by the complementarity between DNA primase (P8), DNA
helicase RecG (P24) and A/G-specific adenine glycosylase
(P28). In fact, DNA primase (P8) and DNA helicase RecG
(P24) present good accuracies in a traditional supervised
learning setting (see Table 3) and A/G-specific adenine gly-
cosylase (P28) presents the ability to correctly classify bac-
teria that are incorrectly classified with DNA primase (P8)
and DNA helicase RecG (P24).

Table 5 suggests that ionizing resistant radiation is better
reflected in three biological processes : (i) synthesis by the
DNA primase (P8) of small RNA primers for the Okazaki
fragments on both template strands at replication forks dur-
ing chromosomal DNA synthesis; (ii) maintaining genomic
stability and integrity by controlling recombination events,
and repairing DNA damage by the DNA helicase RecG
(P24); and (iii) repair of G-A mispairs and oxidatively dam-
aged form of guanine by MutY (P28).

The high values of specificity presented by MIL-ALIGN
show the ability of MIL-ALIGN to identify negative bags
(IRSB).

4. CONCLUSION
In this paper, we addressed the issue of classifying

ionizing-radiation-resistant bacteria (IRRB). We have con-
sidered that this problem is a multiple-instance learning
problem in which bacteria represent bags and repair proteins
of each bacterium represent instances. We have formulated
the studied problem and described our proposed algorithm
(MIL-ALIGN) for phenotype prediction in the case of IRRB.
By running experiments on a real dataset, we have shown
that first results of MIL-ALIGN are satisfactory.

In the future work, we will study the performance of the
proposed approach to improve its efficiency. Also, we will
study the use of a priori knowledge to improve the efficiency



Table 4: Percentage of failed classifications
Phenotype Bacterium Rate of failed predictions (%)

IRRB

Acinetobacter radioresistens SH164 15
Kineococcus radiotolerans SRS30216 33.33
Methylobacterium radiotolerans JCM 2831 77.77
Deinococcus maricopensis DSM 21211 0
Gemmata obscuriglobus UQM 2246 47.05
Deinococcus proteolyticus MRP 5.88
Truepera radiovictrix DSM 17093 27.77
Acinetobacter radioresistens SK82 11.11

IRSB

Escherichia coli OP50 20
Neisseria gonorrhoeae MS11 6.25
Neisseria gonorrhoeae PID1 0
Neisseria gonorrhoeae DGI18 0
Pseudomonas putida S16 47.61
Thermus thermophilus SG0.5JP17-16 83.33

Table 5: Experimental results of MIL-ALIGN with leave-one-out-based evaluation technique
Used proteins Aggregation method Accuracy (%) Sensitivity (%) Specificity (%)

All proteins
SMS 71.39 75 66.6

WAMS 78.5 72.7 100

DNA Polymerase proteins
SMS 71.39 75 66.6

WAMS 78.5 77.7 80

Replication complex proteins
SMS 71.39 75 66.6

WAMS 78.5 77.7 80

Other DNA-associated proteins
SMS 78.5 85.7 71.4

WAMS 78.5 72.7 100

P8 P24 P28
SMS 85.7 87.7 83.3

WAMS 92.8 88.8 100

P6 P7 P8 P24 P28
SMS 85.7 87.7 83.3

WAMS 92.8 88.8 100

of our algorithm. This a priori knowledge can be used to
assign weights to proteins during the learning step of our
approach. A notable interest will be dedicated to the study
of other proteins that can be involved to the high resistance
of IRRB to the ionizing radiations and desiccation. In fact,
many antioxidant enzymes may play important roles in scav-
enging free radicals caused by irradiation [6]. Finally, we will
study possible extensions of our approach with other learn-
ing models [3].
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